Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 83(23): 3989-4004, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725704

RESUMEN

Oral selective estrogen receptor degraders (SERD) could become the backbone of endocrine therapy (ET) for estrogen receptor-positive (ER+) breast cancer, as they achieve greater inhibition of ER-driven cancers than current ETs and overcome key resistance mechanisms. In this study, we evaluated the preclinical pharmacology and efficacy of the next-generation oral SERD camizestrant (AZD9833) and assessed ER-co-targeting strategies by combining camizestrant with CDK4/6 inhibitors (CDK4/6i) and PI3K/AKT/mTOR-targeted therapy in models of progression on CDK4/6i and/or ET. Camizestrant demonstrated robust and selective ER degradation, modulated ER-regulated gene expression, and induced complete ER antagonism and significant antiproliferation activity in ESR1 wild-type (ESR1wt) and mutant (ESR1m) breast cancer cell lines and patient-derived xenograft (PDX) models. Camizestrant also delivered strong antitumor activity in fulvestrant-resistant ESR1wt and ESR1m PDX models. Evaluation of camizestrant in combination with CDK4/6i (palbociclib or abemaciclib) in CDK4/6-naive and -resistant models, as well as in combination with PI3Kαi (alpelisib), mTORi (everolimus), or AKTi (capivasertib), indicated that camizestrant was active with CDK4/6i or PI3K/AKT/mTORi and that antitumor activity was further increased by the triple combination. The response was observed independently of PI3K pathway mutation status. Overall, camizestrant shows strong and broad antitumor activity in ER+ breast cancer as a monotherapy and when combined with CDK4/6i and PI3K/AKT/mTORi. SIGNIFICANCE: Camizestrant, a next-generation oral SERD, shows promise in preclinical models of ER+ breast cancer alone and in combination with CDK4/6 and PI3K/AKT/mTOR inhibitors to address endocrine resistance, a current barrier to treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Receptores de Estrógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas/metabolismo , Antagonistas de Estrógenos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa 4 Dependiente de la Ciclina , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
2.
Nat Commun ; 14(1): 4221, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452026

RESUMEN

Resistance to endocrine treatments and CDK4/6 inhibitors is considered a near-inevitability in most patients with estrogen receptor positive breast cancers (ER + BC). By genomic and metabolomics analyses of patients' tumours, metastasis-derived patient-derived xenografts (PDX) and isogenic cell lines we demonstrate that a fraction of metastatic ER + BC is highly reliant on oxidative phosphorylation (OXPHOS). Treatment by the OXPHOS inhibitor IACS-010759 strongly inhibits tumour growth in multiple endocrine and palbociclib resistant PDX. Mutations in the PIK3CA/AKT1 genes are significantly associated with response to IACS-010759. At the metabolic level, in vivo response to IACS-010759 is associated with decreased levels of metabolites of the glutathione, glycogen and pentose phosphate pathways in treated tumours. In vitro, endocrine and palbociclib resistant cells show increased OXPHOS dependency and increased ROS levels upon IACS-010759 treatment. Finally, in ER + BC patients, high expression of OXPHOS associated genes predict poor prognosis. In conclusion, these results identify OXPHOS as a promising target for treatment resistant ER + BC patients.


Asunto(s)
Neoplasias de la Mama , Animales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosforilación Oxidativa , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores de Estrógenos/metabolismo , Modelos Animales de Enfermedad
3.
Cancers (Basel) ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190207

RESUMEN

Uveal Melanoma (UM) is a rare and malignant intraocular tumor with dismal prognosis. Even if radiation or surgery permit an efficient control of the primary tumor, up to 50% of patients subsequently develop metastases, mainly in the liver. The treatment of UM metastases is challenging and the patient survival is very poor. The most recurrent event in UM is the activation of Gαq signaling induced by mutations in GNAQ/11. These mutations activate downstream effectors including protein kinase C (PKC) and mitogen-activated protein kinases (MAPK). Clinical trials with inhibitors of these targets have not demonstrated a survival benefit for patients with UM metastasis. Recently, it has been shown that GNAQ promotes YAP activation through the focal adhesion kinase (FAK). Pharmacological inhibition of MEK and FAK showed remarkable synergistic growth-inhibitory effects in UM both in vitro and in vivo. In this study, we have evaluated the synergy of the FAK inhibitor with a series of inhibitors targeting recognized UM deregulated pathways in a panel of cell lines. The combined inhibition of FAK and MEK or PKC had highly synergistic effects by reducing cell viability and inducing apoptosis. Furthermore, we demonstrated that these combinations exert a remarkable in vivo activity in UM patient-derived xenografts. Our study confirms the previously described synergy of the dual inhibition of FAK and MEK and identifies a novel combination of drugs (FAK and PKC inhibitors) as a promising strategy for therapeutic intervention in metastatic UM.

4.
Nat Commun ; 14(1): 1958, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029129

RESUMEN

The high frequency of homologous recombination deficiency (HRD) is the main rationale of testing platinum-based chemotherapy in triple-negative breast cancer (TNBC), however, the existing methods to identify HRD are controversial and there is a medical need for predictive biomarkers. We assess the in vivo response to platinum agents in 55 patient-derived xenografts (PDX) of TNBC to identify determinants of response. The HRD status, determined from whole genome sequencing, is highly predictive of platinum response. BRCA1 promoter methylation is not associated with response, in part due to residual BRCA1 gene expression and homologous recombination proficiency in different tumours showing mono-allelic methylation. Finally, in 2 cisplatin sensitive tumours we identify mutations in XRCC3 and ORC1 genes that are functionally validated in vitro. In conclusion, our results demonstrate that the genomic HRD is predictive of platinum response in a large cohort of TNBC PDX and identify alterations in XRCC3 and ORC1 genes driving cisplatin response.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Cisplatino/farmacología , Cisplatino/uso terapéutico , Platino (Metal)/uso terapéutico , Proteína BRCA1/genética , Recombinación Homóloga , Mutación , Secuenciación Completa del Genoma , Proteína BRCA2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...